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We have prepared stable materials containing 0.1-1% of a 
volatile nonionic guest "salted" in an alkali halide matrix. The 
term "salting" acknowledges the ancient practice of preserving 
perishables by mixing with salt.2'3 

Codeposition of vapors on a cold surface can yield intimate 
mixtures, even of components immiscible under equilibrium 
conditions.4"7 We wish to identify inert and/or reactive host 
materials stable as room-temperature solids, suitable for deposition 
as vapor, and capable of permanently incorporating guest mole­
cules for high-temperature matrix isolation. While organic ma­
trices with good equilibrium solubility for organic guests are 
common,8"10 the only previously reported vapor-deposited or­
ganic-inorganic composites of interest here involve metals as 
hosts.11'12 

Alkali halides, high-melting solids suitable for optical and 
magnetic resonance spectroscopy, have been used as single-crystal 
host materials doped with impurity ("color") centers13 by co-
crystallization with ionic guests. Doping by equilibration with 
a vapor requires temperatures close to the melting point of the 
host, prohibitive for organic substrates.14 

We find that cocondensation of organic vapors with excess alkali 
halide vapor on a 77 K surface and warming to 25 0C in vacuo 
produce host microcrystals15 incorporating the volatile guest. 
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Figure 1. FT-IR spectrum of iron pentacarbonyl in isopentane/potassium 
bromide matrix at 20 K. Bottom curve, before irradiation; top curve, 
after irradiation at 308 nm. 

Permanency of incorporation was tested by heating to 100 0C 
under 10"3 to 10"4 torr for 1 h. Such treatment removes all volatile 
material that is adsorbed on the surface of the host (and all volatile 
components from samples produced by mere mechanical mixing 
of the components and pressing16). The presence of the guest 
was detected by IR and UV absorption, fluorescence, and MAS 
NMR spectra of the solids. It can be recovered upon dissolution 
in water.17 Benzene, naphthalene, anthracene, diphenylmethane, 
toluene, p-dichlorobenzene, 2,6-dichlorophenol, dodecamethyl-
cyclohexasilane, 1-adamantanol, l-(2-hydroxyethyl)adamantane, 
1-azidoadamantane, and iron pentacarbonyl incorporated both 
in NaCl and in CsI, while chlorobenzene, phenol, p-fluorophenol, 
anisole, and acetophenone incorporated in CsI but not NaCl. 
Pyrrole incorporated in neither. KBr behaves like CsI, and a series 
of saturated C5 and C6 hydrocarbons incorporated readily. In 
general, nonpolar materials incorporate best. 

The permanency of the incorporation is astonishing. For in­
stance, naphthalene remains in CsI after 2 h at 450 0C or grinding 
followed by ultrasound (10 h, 25 0C). Several samples remained 
unchanged for 2 years. 

Considering the extreme guest-host incompatibility, it is not 
surprising that the salted guest molecules are aggregated (cf. 
micelles), judging by the IR spectra of phenol and alcohols and 
UV absorption and emission of naphthalene and anthracene. 
Moreover, the spectra show that UV irradiation (254 nm) of pellets 
pressed (<2 X 104 psi) from our materials produces the photodimer 
from salted anthracene, tetramesityldisilene18 from 2,2-dimesi-
tylhexamethyltrisilane salted in KBr, azahomoadamantene dimer19 

from 1-azidoadamantane in KBr, and Fe2(CO)9 + CO20,21 from 
Fe(CO)5 in KBr or CsI. Thermal reversal of the last-named 
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process is quantitative [first-order k = (2.8 ± 0.1) X 10"6 s"1 at 
27 0C; this ordinarily requires high CO pressures22], demonstrating 
that even the small CO molecules are trapped next to Fe2(CO)9 
within microcavities in the host. Scanning electron microscope 
(150000X) reveals Fe(CO)5 and W(CO)6 salted in KBr as di-
mensionless dots imaging as the respective metal; these guest 
aggregates are at most 10 A in diameter. 

Single-molecule isolation is an important goal. We have suc­
ceeded in isolating salted Fe(CO)5 using a three-component 
system. Codeposition of Fe(CO)5, an alkane (n-pentane, iso-
pentane, neopentane, cyclopentane, or 3-methylpentane), and KBr 
(1:10:2000) yielded a material with sharp IR bands of Fe(CO)5 
(Figure 1). After a time amply sufficient to convert Fe(CO)5 
salted in KBr to Fe2(CO)9 + CO, room-temperature UV irra­
diation of Fe(CO)5 cosalted with an alkane in KBr had no effect. 
Extended irradiation eventually destroyed all carbonyl IR bands, 
but even then, no Fe2(CO)9 was detected. 

We propose that the ternary material contains Fe(CO)5 
molecules mutually isolated within alkane-filled microcavities in 
the host. Indeed, while irradiation (308 nm) at 20 K rapidly 
converts the binary composite to Fe2(CO)9 and then slowly to 
Fe2(CO)8,

23 it converts the ternary material to CO and the C3p 
form of Fe(CO)4 (Figure 1). This is the stable form of Fe(CO)4 
when stabilized by a weak ligand in the fifth coordinating posi­
tion,21 perhaps best viewed as Fe(CO4)X (X = alkane or Br"). 
Upon warmup, Fe(CO)5 is reformed quantitatively. Thus, the 
photochemistry of salted Fe(CO)5 can be summarized as follows: 

Scheme I. Mares's Mechanism4 

C 
A»;-CO Fe(CO)6 +CO 

Fe(CO)5 • = = = Fe(CO)4 Fe2(CO)9 
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Oxidation of olefins using nitro complexes of palladium(II) has 
recently attracted attention.2"4 Depending on the reaction con­
ditions, Pd(Cl)(NO2)(CH3CN)2 has been reported to selectively 
catalyze the oxygen oxidation of olefins to either epoxides, ketones, 
or glycol monoacetates.2"4 Mares and co-workers4 recently re­
ported that oxidation of terminal olefins by Pd(Cl)(NO2)(CH3-
CN)2 (catalytic or stoichiometric) in acetic acid afforded ap­
proximately equal amounts of 2-acetoxy-l-alkanol and 1-acet-
oxy-2-alkanol as the main products. Furthermore, when the nitro 
group was labeled with 18O, the 18O label was exclusively in the 
acetate group of the products. To account for these results they 
suggested a mechanism via an acetoxypalladation, followed by 
an acetyl migration to an oxygen in the coordinated NO2 group 
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and subsequent acetoxy migration to palladium and reductive 
elimination (Scheme I). 

There are two features with the mechanism proposed by Mares 
that to us seemed inconsistent with known palladium chemistry. 
First, the mechanism would require an approximate 1:1 ratio of 
Markovnikov and anti-Markovnikov acetoxypalladation. Under 
the conditions used, however, one would expect a high regiose-
lectivity for acetate attack at the nonterminal carbon in the 7r-olefin 
complex, in accordance with known acetoxypalladation and ox-
ypalladation reactions.5,6 

Second, the mechanism would require a reductive elimination 
between an alkyl group and an oxygen nucleophile. There are 
hitherto no known examples of such reductive eliminations in 
palladium chemistry, and a recent ab initio ECP calculation 
suggests that such a process is highly unlikely due to the low orbital 
energy of the palladium-oxygen bond.7 We therefore decided 
to study the mechanism of this glycol monoacetate process. 

Acetoxypalladation of olefins is known8 to occur with trans 
stereochemistry across the double bond. Since the mechanism 
suggested by Mares4 requires the palladium-carbon bond to be 
cleaved with retention of configuration at carbon, the result would 
be an overall trans addition of OH and AcO across the double 
bond. A simple way of testing Mares's mechanism would therefore 
be to study the stereochemistry of the glycol monoacetate for­
mation from the olefin. 

Reaction of a 2-fold excess of (ZT)-I-deuterio-1-decene9 with 
Pd(Cl)(NO2)(CH3CN)2

10 in acetic acid under air atmosphere for 
2 h" afforded 1 and 2 in approximately equal amounts according 
to GLC, HPLC, and 1H NMR. Small amounts of 2-decanone 
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were also formed, the ratio 2-decanone to glycol monoacetate being 
1:4 according to GLC. Separation of the glycol monoacetates 
1 and 2 by preparative HPLC (silica, hexane/ethyl acetate = 
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